
Scott Lembcke

Lossy Image Bisection
For my project, I applied using image bisection in a lossy manner for image and

video compression. The basic idea is that each channel in the image is recursively

split in half along its longest axis and any node that contains values that differ by less

than a given threshold are replaced by the average of all the values. The result of this

process is a binary tree with the image information stored in the leaves. This tree can

then be serialized and stored. I chose to do so by storing the tree structure using a

prefix code, and then following that by storing the leaves in order of their occurrence in

the tree. One benefit of using this format is that it is possible to traverse the tree without

actually reconstructing it. As a final step, I would compress the serialized tree with gzip.

To implement my algorithm, I created a number of command line programs that use

standard input and output to create a pipeline. Several stages were possible. When

compressing, one program would read a PNG file and decompress it to a raw 8 bit

RGB stream. This would then be passed to a program that would separate the color

channels. I wrote two such programs, one that would output RGB, and another that

would output YCbCr. Eventually I exclusively used the YCbCr program, as it allowed

roughly twice the compression with similar output quality. After the channels were

separated, they are passed to the compression program which bisects the image and

outputs the serialized tree. Finally, this tree is passed to gzip as a final compression

step. Decompression proceeds much the same way, the gzipped tree is

decompressed, and used to generate the image channels, which are then composed

into RGB and written to a PNG file.

Video compression simply works by compressing the differences between the

last compressed frame and the next frame. That way it doesn't accumulate any more

error than the amount used for the bisection tolerance.

The core programs were implemented in C that used stdin/stdout, a ruby script

was used to construct the pipeline. I had never really created a program using a

pipeline in this way, but I found it to work very well for this project. This was especially

useful when I got to video compression. I realized that all I had to do was to modify the

pipeline by adding a few more stages. My implementation uses, but does not depend

on, libPNG and the gzip program. libPNG was used for reading and writing .png files,

while gzip was used to further increase the compression ratio of my program. The

source can be found at http://epoxy.morris.umn.edu/~lembckesd/results/src.

My algorithm works best (compression ratio wise) on large images with low

frequency information in them, and worst with small images with high frequency

information. The best case is that an entire image could be replaced by a single tree

node, allowing the image to be compressed to a few bytes. The worst case would be

when every pixel has its own tree node, this means that every pixel value would be

present in the output along with the tree structure. The tree structure is approximately

2n bits long, where n is the number of nodes in the tree. So in the worst case, where p

is the number of pixels, you would have approximately p + (2p)/8 bytes, or a 25%

expansion. When working with video, it performs best when a large portion of the

frame that changes by a constant, as a large solid colored region can usually be

replaced by a small number of bisection boxes. The worst case is when the difference

has a large area of erratic changes, as this becomes a lot of high frequency

information to encode.
The images and movies in the results can be found at:

http://epoxy.mrs.umn.edu/~lembckesd/results

Image Compression Ratios: (without zlib / with zlib)
tol \ img clouds.png lena.png mandril.png
0 1.7 / 3.3 0.85 / 1.4 0.89 / 1.3
8 35 / 43 2.2 / 2.7 2.0 / 2.4
12 72 / 83 3.8 / 4.5 2.7 / 3.0
16 116 / 135 5.4 / 6.2 3.2 / 3.6
24 281 / 305 11 / 11 4.7 / 5.1
48 1721 / 1787 33 / 34 9.7 / 10
64 4562 / 4546 57 / 59 14 / 15
96 21253 / 20045 150 / 153 33 / 34

Lossless Image Compression Comparison:
Bisect PNG

clouds.png: 3.33 2.86
lena.png: 1.35 1.54
mandril.png: 1.33 1.29

Lossless Animation Compression Comparison:
Mine: 161
8bit RLE 55
1bit RLE 216

Video Compression Comparison:
H.264 270
Bisect (tol 24) 77
Bisect (tol 12) 37

From the image compression results, you can see that the cloud.png picture

compressed the best as it had a lot of low frequency information in it. For this reason, it

also becomes unrecognizable at a much lower tolerance than the other two pictures.

The other two pictures didn't perform nearly as well, but still increased the

compression ratios over PNG at low tolerances without introducing highly visible

artifacts. On the clouds.png and mandril.png images, lossless bisection beat PNG's

compression. I would guess that lena.png didn't show the same results due to the

noticeable amount of image noise. Also interesting is that although bisection increases

the size of images at low tolerances the final zlib compressed file is smaller than the

PNG file it came from (which also uses zlib). I would guess this is because the tree

provides better entropy coding, placing more adjacent pixels near each other in the

output.

The lossless animation compression is where my algorithm really shines. The

animation used was one of my black and white physics animations. This allows very

large areas to be encoded in very few tree nodes. Also, because it's black and white,

there is little entropy in the luminance, and none in the chroma. Compressing the

animation as a 24bit color even beat Quicktime's 8bit grayscale RLE codec. However,

it couldn't beat the 1bit RLE codec. Both RLE codecs use frame differencing to

increase the compression.

The video I choose to compress didn't fare nearly as well. Looking at the frame

differences, there is simply too much change between frames to get good

compression. Compared to the state-of-the-art H.264 video compression codec, image

bisection looks pretty abysmal. Providing video with very noticeable artifacts and

relatively poor image compression ratios.

Further improvements to my algorithm could include compression of the tree

structure which probably contains a lot of redundant subtrees. Another possibility

would be a better representation of tree nodes. Rather than simply storing the average

color, some sort of transform could be done to increase the quality of the nodes.

