Chipmunk2D Pro API Reference  7.0.3
 All Classes Functions Variables Typedefs Enumerations Enumerator Properties Groups Pages
cpVect.h
1 /* Copyright (c) 2013 Scott Lembcke and Howling Moon Software
2  *
3  * Permission is hereby granted, free of charge, to any person obtaining a copy
4  * of this software and associated documentation files (the "Software"), to deal
5  * in the Software without restriction, including without limitation the rights
6  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7  * copies of the Software, and to permit persons to whom the Software is
8  * furnished to do so, subject to the following conditions:
9  *
10  * The above copyright notice and this permission notice shall be included in
11  * all copies or substantial portions of the Software.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
19  * SOFTWARE.
20  */
21 
22 #ifndef CHIPMUNK_VECT_H
23 #define CHIPMUNK_VECT_H
24 
25 #include "chipmunk_types.h"
26 
30 
32 static const cpVect cpvzero = {0.0f,0.0f};
33 
35 static inline cpVect cpv(const cpFloat x, const cpFloat y)
36 {
37  cpVect v = {x, y};
38  return v;
39 }
40 
42 static inline cpBool cpveql(const cpVect v1, const cpVect v2)
43 {
44  return (v1.x == v2.x && v1.y == v2.y);
45 }
46 
48 static inline cpVect cpvadd(const cpVect v1, const cpVect v2)
49 {
50  return cpv(v1.x + v2.x, v1.y + v2.y);
51 }
52 
54 static inline cpVect cpvsub(const cpVect v1, const cpVect v2)
55 {
56  return cpv(v1.x - v2.x, v1.y - v2.y);
57 }
58 
60 static inline cpVect cpvneg(const cpVect v)
61 {
62  return cpv(-v.x, -v.y);
63 }
64 
66 static inline cpVect cpvmult(const cpVect v, const cpFloat s)
67 {
68  return cpv(v.x*s, v.y*s);
69 }
70 
72 static inline cpFloat cpvdot(const cpVect v1, const cpVect v2)
73 {
74  return v1.x*v2.x + v1.y*v2.y;
75 }
76 
80 static inline cpFloat cpvcross(const cpVect v1, const cpVect v2)
81 {
82  return v1.x*v2.y - v1.y*v2.x;
83 }
84 
86 static inline cpVect cpvperp(const cpVect v)
87 {
88  return cpv(-v.y, v.x);
89 }
90 
92 static inline cpVect cpvrperp(const cpVect v)
93 {
94  return cpv(v.y, -v.x);
95 }
96 
98 static inline cpVect cpvproject(const cpVect v1, const cpVect v2)
99 {
100  return cpvmult(v2, cpvdot(v1, v2)/cpvdot(v2, v2));
101 }
102 
104 static inline cpVect cpvforangle(const cpFloat a)
105 {
106  return cpv(cpfcos(a), cpfsin(a));
107 }
108 
110 static inline cpFloat cpvtoangle(const cpVect v)
111 {
112  return cpfatan2(v.y, v.x);
113 }
114 
116 static inline cpVect cpvrotate(const cpVect v1, const cpVect v2)
117 {
118  return cpv(v1.x*v2.x - v1.y*v2.y, v1.x*v2.y + v1.y*v2.x);
119 }
120 
122 static inline cpVect cpvunrotate(const cpVect v1, const cpVect v2)
123 {
124  return cpv(v1.x*v2.x + v1.y*v2.y, v1.y*v2.x - v1.x*v2.y);
125 }
126 
128 static inline cpFloat cpvlengthsq(const cpVect v)
129 {
130  return cpvdot(v, v);
131 }
132 
134 static inline cpFloat cpvlength(const cpVect v)
135 {
136  return cpfsqrt(cpvdot(v, v));
137 }
138 
140 static inline cpVect cpvlerp(const cpVect v1, const cpVect v2, const cpFloat t)
141 {
142  return cpvadd(cpvmult(v1, 1.0f - t), cpvmult(v2, t));
143 }
144 
146 static inline cpVect cpvnormalize(const cpVect v)
147 {
148  // Neat trick I saw somewhere to avoid div/0.
149  return cpvmult(v, 1.0f/(cpvlength(v) + CPFLOAT_MIN));
150 }
151 
153 static inline cpVect
154 cpvslerp(const cpVect v1, const cpVect v2, const cpFloat t)
155 {
156  cpFloat dot = cpvdot(cpvnormalize(v1), cpvnormalize(v2));
157  cpFloat omega = cpfacos(cpfclamp(dot, -1.0f, 1.0f));
158 
159  if(omega < 1e-3){
160  // If the angle between two vectors is very small, lerp instead to avoid precision issues.
161  return cpvlerp(v1, v2, t);
162  } else {
163  cpFloat denom = 1.0f/cpfsin(omega);
164  return cpvadd(cpvmult(v1, cpfsin((1.0f - t)*omega)*denom), cpvmult(v2, cpfsin(t*omega)*denom));
165  }
166 }
167 
169 static inline cpVect
170 cpvslerpconst(const cpVect v1, const cpVect v2, const cpFloat a)
171 {
172  cpFloat dot = cpvdot(cpvnormalize(v1), cpvnormalize(v2));
173  cpFloat omega = cpfacos(cpfclamp(dot, -1.0f, 1.0f));
174 
175  return cpvslerp(v1, v2, cpfmin(a, omega)/omega);
176 }
177 
179 static inline cpVect cpvclamp(const cpVect v, const cpFloat len)
180 {
181  return (cpvdot(v,v) > len*len) ? cpvmult(cpvnormalize(v), len) : v;
182 }
183 
185 static inline cpVect cpvlerpconst(cpVect v1, cpVect v2, cpFloat d)
186 {
187  return cpvadd(v1, cpvclamp(cpvsub(v2, v1), d));
188 }
189 
191 static inline cpFloat cpvdist(const cpVect v1, const cpVect v2)
192 {
193  return cpvlength(cpvsub(v1, v2));
194 }
195 
197 static inline cpFloat cpvdistsq(const cpVect v1, const cpVect v2)
198 {
199  return cpvlengthsq(cpvsub(v1, v2));
200 }
201 
203 static inline cpBool cpvnear(const cpVect v1, const cpVect v2, const cpFloat dist)
204 {
205  return cpvdistsq(v1, v2) < dist*dist;
206 }
207 
209 
213 
214 // NUKE
215 static inline cpMat2x2
216 cpMat2x2New(cpFloat a, cpFloat b, cpFloat c, cpFloat d)
217 {
218  cpMat2x2 m = {a, b, c, d};
219  return m;
220 }
221 
222 static inline cpVect
223 cpMat2x2Transform(cpMat2x2 m, cpVect v)
224 {
225  return cpv(v.x*m.a + v.y*m.b, v.x*m.c + v.y*m.d);
226 }
227 
229 
230 #endif