Chipmunk2D Pro API Reference  7.0.3
 All Classes Functions Variables Typedefs Enumerations Enumerator Properties Groups Pages
chipmunk_private.h
1 /* Copyright (c) 2013 Scott Lembcke and Howling Moon Software
2  *
3  * Permission is hereby granted, free of charge, to any person obtaining a copy
4  * of this software and associated documentation files (the "Software"), to deal
5  * in the Software without restriction, including without limitation the rights
6  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7  * copies of the Software, and to permit persons to whom the Software is
8  * furnished to do so, subject to the following conditions:
9  *
10  * The above copyright notice and this permission notice shall be included in
11  * all copies or substantial portions of the Software.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
19  * SOFTWARE.
20  */
21 
22 #ifndef CHIPMUNK_PRIVATE_H
23 #define CHIPMUNK_PRIVATE_H
24 
25 #include "chipmunk/chipmunk.h"
26 #include "chipmunk/chipmunk_structs.h"
27 
28 #define CP_HASH_COEF (3344921057ul)
29 #define CP_HASH_PAIR(A, B) ((cpHashValue)(A)*CP_HASH_COEF ^ (cpHashValue)(B)*CP_HASH_COEF)
30 
31 // TODO: Eww. Magic numbers.
32 #define MAGIC_EPSILON 1e-5
33 
34 
35 //MARK: cpArray
36 
37 cpArray *cpArrayNew(int size);
38 
39 void cpArrayFree(cpArray *arr);
40 
41 void cpArrayPush(cpArray *arr, void *object);
42 void *cpArrayPop(cpArray *arr);
43 void cpArrayDeleteObj(cpArray *arr, void *obj);
44 cpBool cpArrayContains(cpArray *arr, void *ptr);
45 
46 void cpArrayFreeEach(cpArray *arr, void (freeFunc)(void*));
47 
48 
49 //MARK: cpHashSet
50 
51 typedef cpBool (*cpHashSetEqlFunc)(const void *ptr, const void *elt);
52 typedef void *(*cpHashSetTransFunc)(const void *ptr, void *data);
53 
54 cpHashSet *cpHashSetNew(int size, cpHashSetEqlFunc eqlFunc);
55 void cpHashSetSetDefaultValue(cpHashSet *set, void *default_value);
56 
57 void cpHashSetFree(cpHashSet *set);
58 
59 int cpHashSetCount(cpHashSet *set);
60 const void *cpHashSetInsert(cpHashSet *set, cpHashValue hash, const void *ptr, cpHashSetTransFunc trans, void *data);
61 const void *cpHashSetRemove(cpHashSet *set, cpHashValue hash, const void *ptr);
62 const void *cpHashSetFind(cpHashSet *set, cpHashValue hash, const void *ptr);
63 
64 typedef void (*cpHashSetIteratorFunc)(void *elt, void *data);
65 void cpHashSetEach(cpHashSet *set, cpHashSetIteratorFunc func, void *data);
66 
67 typedef cpBool (*cpHashSetFilterFunc)(void *elt, void *data);
68 void cpHashSetFilter(cpHashSet *set, cpHashSetFilterFunc func, void *data);
69 
70 
71 //MARK: Bodies
72 
73 void cpBodyAddShape(cpBody *body, cpShape *shape);
74 void cpBodyRemoveShape(cpBody *body, cpShape *shape);
75 
76 //void cpBodyAccumulateMassForShape(cpBody *body, cpShape *shape);
77 void cpBodyAccumulateMassFromShapes(cpBody *body);
78 
79 void cpBodyRemoveConstraint(cpBody *body, cpConstraint *constraint);
80 
81 
82 //MARK: Spatial Index Functions
83 
84 cpSpatialIndex *cpSpatialIndexInit(cpSpatialIndex *index, cpSpatialIndexClass *klass, cpSpatialIndexBBFunc bbfunc, cpSpatialIndex *staticIndex);
85 
86 
87 //MARK: Arbiters
88 
89 cpArbiter* cpArbiterInit(cpArbiter *arb, cpShape *a, cpShape *b);
90 
91 static inline struct cpArbiterThread *
92 cpArbiterThreadForBody(cpArbiter *arb, cpBody *body)
93 {
94  return (arb->body_a == body ? &arb->thread_a : &arb->thread_b);
95 }
96 
97 void cpArbiterUnthread(cpArbiter *arb);
98 
99 void cpArbiterUpdate(cpArbiter *arb, struct cpCollisionInfo *info, cpSpace *space);
100 void cpArbiterPreStep(cpArbiter *arb, cpFloat dt, cpFloat bias, cpFloat slop);
101 void cpArbiterApplyCachedImpulse(cpArbiter *arb, cpFloat dt_coef);
102 void cpArbiterApplyImpulse(cpArbiter *arb);
103 
104 
105 //MARK: Shapes/Collisions
106 
107 cpShape *cpShapeInit(cpShape *shape, const cpShapeClass *klass, cpBody *body, struct cpShapeMassInfo massInfo);
108 
109 static inline cpBool
110 cpShapeActive(cpShape *shape)
111 {
112  // checks if the shape is added to a shape list.
113  // TODO could this just check the space now?
114  return (shape->prev || (shape->body && shape->body->shapeList == shape));
115 }
116 
117 // Note: This function returns contact points with r1/r2 in absolute coordinates, not body relative.
118 struct cpCollisionInfo cpCollide(const cpShape *a, const cpShape *b, cpCollisionID id, struct cpContact *contacts);
119 
120 static inline void
121 CircleSegmentQuery(cpShape *shape, cpVect center, cpFloat r1, cpVect a, cpVect b, cpFloat r2, cpSegmentQueryInfo *info)
122 {
123  cpVect da = cpvsub(a, center);
124  cpVect db = cpvsub(b, center);
125  cpFloat rsum = r1 + r2;
126 
127  cpFloat qa = cpvdot(da, da) - 2.0f*cpvdot(da, db) + cpvdot(db, db);
128  cpFloat qb = cpvdot(da, db) - cpvdot(da, da);
129  cpFloat det = qb*qb - qa*(cpvdot(da, da) - rsum*rsum);
130 
131  if(det >= 0.0f){
132  cpFloat t = (-qb - cpfsqrt(det))/(qa);
133  if(0.0f<= t && t <= 1.0f){
134  cpVect n = cpvnormalize(cpvlerp(da, db, t));
135 
136  info->shape = shape;
137  info->point = cpvsub(cpvlerp(a, b, t), cpvmult(n, r2));
138  info->normal = n;
139  info->alpha = t;
140  }
141  }
142 }
143 
144 static inline cpBool
145 cpShapeFilterReject(cpShapeFilter a, cpShapeFilter b)
146 {
147  // Reject the collision if:
148  return (
149  // They are in the same non-zero group.
150  (a.group != 0 && a.group == b.group) ||
151  // One of the category/mask combinations fails.
152  (a.categories & b.mask) == 0 ||
153  (b.categories & a.mask) == 0
154  );
155 }
156 
157 void cpLoopIndexes(const cpVect *verts, int count, int *start, int *end);
158 
159 
160 //MARK: Constraints
161 // TODO naming conventions here
162 
163 void cpConstraintInit(cpConstraint *constraint, const struct cpConstraintClass *klass, cpBody *a, cpBody *b);
164 
165 static inline void
166 cpConstraintActivateBodies(cpConstraint *constraint)
167 {
168  cpBody *a = constraint->a; cpBodyActivate(a);
169  cpBody *b = constraint->b; cpBodyActivate(b);
170 }
171 
172 static inline cpVect
173 relative_velocity(cpBody *a, cpBody *b, cpVect r1, cpVect r2){
174  cpVect v1_sum = cpvadd(a->v, cpvmult(cpvperp(r1), a->w));
175  cpVect v2_sum = cpvadd(b->v, cpvmult(cpvperp(r2), b->w));
176 
177  return cpvsub(v2_sum, v1_sum);
178 }
179 
180 static inline cpFloat
181 normal_relative_velocity(cpBody *a, cpBody *b, cpVect r1, cpVect r2, cpVect n){
182  return cpvdot(relative_velocity(a, b, r1, r2), n);
183 }
184 
185 static inline void
186 apply_impulse(cpBody *body, cpVect j, cpVect r){
187  body->v = cpvadd(body->v, cpvmult(j, body->m_inv));
188  body->w += body->i_inv*cpvcross(r, j);
189 }
190 
191 static inline void
192 apply_impulses(cpBody *a , cpBody *b, cpVect r1, cpVect r2, cpVect j)
193 {
194  apply_impulse(a, cpvneg(j), r1);
195  apply_impulse(b, j, r2);
196 }
197 
198 static inline void
199 apply_bias_impulse(cpBody *body, cpVect j, cpVect r)
200 {
201  body->v_bias = cpvadd(body->v_bias, cpvmult(j, body->m_inv));
202  body->w_bias += body->i_inv*cpvcross(r, j);
203 }
204 
205 static inline void
206 apply_bias_impulses(cpBody *a , cpBody *b, cpVect r1, cpVect r2, cpVect j)
207 {
208  apply_bias_impulse(a, cpvneg(j), r1);
209  apply_bias_impulse(b, j, r2);
210 }
211 
212 static inline cpFloat
213 k_scalar_body(cpBody *body, cpVect r, cpVect n)
214 {
215  cpFloat rcn = cpvcross(r, n);
216  return body->m_inv + body->i_inv*rcn*rcn;
217 }
218 
219 static inline cpFloat
220 k_scalar(cpBody *a, cpBody *b, cpVect r1, cpVect r2, cpVect n)
221 {
222  cpFloat value = k_scalar_body(a, r1, n) + k_scalar_body(b, r2, n);
223  cpAssertSoft(value != 0.0, "Unsolvable collision or constraint.");
224 
225  return value;
226 }
227 
228 static inline cpMat2x2
229 k_tensor(cpBody *a, cpBody *b, cpVect r1, cpVect r2)
230 {
231  cpFloat m_sum = a->m_inv + b->m_inv;
232 
233  // start with Identity*m_sum
234  cpFloat k11 = m_sum, k12 = 0.0f;
235  cpFloat k21 = 0.0f, k22 = m_sum;
236 
237  // add the influence from r1
238  cpFloat a_i_inv = a->i_inv;
239  cpFloat r1xsq = r1.x * r1.x * a_i_inv;
240  cpFloat r1ysq = r1.y * r1.y * a_i_inv;
241  cpFloat r1nxy = -r1.x * r1.y * a_i_inv;
242  k11 += r1ysq; k12 += r1nxy;
243  k21 += r1nxy; k22 += r1xsq;
244 
245  // add the influnce from r2
246  cpFloat b_i_inv = b->i_inv;
247  cpFloat r2xsq = r2.x * r2.x * b_i_inv;
248  cpFloat r2ysq = r2.y * r2.y * b_i_inv;
249  cpFloat r2nxy = -r2.x * r2.y * b_i_inv;
250  k11 += r2ysq; k12 += r2nxy;
251  k21 += r2nxy; k22 += r2xsq;
252 
253  // invert
254  cpFloat det = k11*k22 - k12*k21;
255  cpAssertSoft(det != 0.0, "Unsolvable constraint.");
256 
257  cpFloat det_inv = 1.0f/det;
258  return cpMat2x2New(
259  k22*det_inv, -k12*det_inv,
260  -k21*det_inv, k11*det_inv
261  );
262 }
263 
264 static inline cpFloat
265 bias_coef(cpFloat errorBias, cpFloat dt)
266 {
267  return 1.0f - cpfpow(errorBias, dt);
268 }
269 
270 
271 //MARK: Spaces
272 
273 #define cpAssertSpaceUnlocked(space) \
274  cpAssertHard(!space->locked, \
275  "This operation cannot be done safely during a call to cpSpaceStep() or during a query. " \
276  "Put these calls into a post-step callback." \
277  );
278 
279 void cpSpaceSetStaticBody(cpSpace *space, cpBody *body);
280 
281 extern cpCollisionHandler cpCollisionHandlerDoNothing;
282 
283 void cpSpaceProcessComponents(cpSpace *space, cpFloat dt);
284 
285 void cpSpacePushFreshContactBuffer(cpSpace *space);
286 struct cpContact *cpContactBufferGetArray(cpSpace *space);
287 void cpSpacePushContacts(cpSpace *space, int count);
288 
289 cpPostStepCallback *cpSpaceGetPostStepCallback(cpSpace *space, void *key);
290 
291 cpBool cpSpaceArbiterSetFilter(cpArbiter *arb, cpSpace *space);
292 void cpSpaceFilterArbiters(cpSpace *space, cpBody *body, cpShape *filter);
293 
294 void cpSpaceActivateBody(cpSpace *space, cpBody *body);
295 void cpSpaceLock(cpSpace *space);
296 void cpSpaceUnlock(cpSpace *space, cpBool runPostStep);
297 
298 static inline void
299 cpSpaceUncacheArbiter(cpSpace *space, cpArbiter *arb)
300 {
301  const cpShape *a = arb->a, *b = arb->b;
302  const cpShape *shape_pair[] = {a, b};
303  cpHashValue arbHashID = CP_HASH_PAIR((cpHashValue)a, (cpHashValue)b);
304  cpHashSetRemove(space->cachedArbiters, arbHashID, shape_pair);
305  cpArrayDeleteObj(space->arbiters, arb);
306 }
307 
308 static inline cpArray *
309 cpSpaceArrayForBodyType(cpSpace *space, cpBodyType type)
310 {
311  return (type == CP_BODY_TYPE_STATIC ? space->staticBodies : space->dynamicBodies);
312 }
313 
314 void cpShapeUpdateFunc(cpShape *shape, void *unused);
315 cpCollisionID cpSpaceCollideShapes(cpShape *a, cpShape *b, cpCollisionID id, cpSpace *space);
316 
317 
318 //MARK: Foreach loops
319 
320 static inline cpConstraint *
321 cpConstraintNext(cpConstraint *node, cpBody *body)
322 {
323  return (node->a == body ? node->next_a : node->next_b);
324 }
325 
326 #define CP_BODY_FOREACH_CONSTRAINT(bdy, var)\
327  for(cpConstraint *var = bdy->constraintList; var; var = cpConstraintNext(var, bdy))
328 
329 static inline cpArbiter *
330 cpArbiterNext(cpArbiter *node, cpBody *body)
331 {
332  return (node->body_a == body ? node->thread_a.next : node->thread_b.next);
333 }
334 
335 #define CP_BODY_FOREACH_ARBITER(bdy, var)\
336  for(cpArbiter *var = bdy->arbiterList; var; var = cpArbiterNext(var, bdy))
337 
338 #define CP_BODY_FOREACH_SHAPE(body, var)\
339  for(cpShape *var = body->shapeList; var; var = var->next)
340 
341 #define CP_BODY_FOREACH_COMPONENT(root, var)\
342  for(cpBody *var = root; var; var = var->sleeping.next)
343 
344 #endif